Abstract

The resurrection plant Craterostigma plantagineum Hochst. is used as an experimental system to investigate desiccation tolerance in higher plants. A search for genes activated during early stages of dehydration identified the gene CpEdi-9, which is expressed in mature seeds and in response to dehydration in the phloem cells of vascular tissues of leaves. Elements for the tissue-specific expression pattern reside in the isolated promoter of the CpEdi-9 gene, as shown through the analysis of transgenic plants. The CpEdi-9 promoter could be a suitable tool for expressing genes in the vascular system of dehydrated plants. CpEdi-9 encodes a small (10 kDa) hydrophilic protein, which does not have significant sequence homologies to known genes. The predicted protein CpEDI-9 shares some physicochemical features with LEA proteins from plants and a nematode. Based on the unique expression pattern and on the nucleotide sequence we propose that CpEdi-9 defines a new class of hydrophilic proteins that are supposed to contribute to cellular protection during dehydration. This group of proteins may have evolved because desiccation tolerance requires the abundant expression of protective proteins during early stages of dehydration in all tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.