Abstract

Accumulating evidence indicates that dopamine (DA) D(3) receptor antagonists appear highly promising in attenuating cocaine reward and relapse in preclinical models of addiction. In the present study, we investigated the effects of the novel D(3)-selective antagonist NGB 2904 (N-(4-[4-{2,3-dichlorophenyl}-1-piperazinyl]butyl)-3-fluorenylcarboxamide) on cocaine self-administration, cocaine-enhanced brain stimulation reward (BSR), and cocaine-triggered reinstatement of drug-seeking behavior in male Long-Evans rats. We found that: (1) acute intraperitoneal (i.p.) administration of NGB 2904 (0.1-10 mg/kg) failed to alter cocaine self-administration (0.5 mg/kg/infusion) under fixed-ratio 2 (FR2) reinforcement, but 1 or 5 mg/kg NGB 2904 significantly lowered the break-point for cocaine self-administration under progressive-ratio (PR) reinforcement; (2) cocaine (1, 2, and 10 mg/kg) significantly enhanced electrical BSR (decreased brain reward thresholds), while NGB 2904 significantly inhibited the enhancement of BSR elicited by 2 mg/kg, but not 10 mg/kg of cocaine; (3) NGB 2904 alone neither maintained self-administration behavior nor altered brain reward thresholds; and (4) NGB 2904 significantly inhibited cocaine-triggered reinstatement of extinguished drug-seeking behavior, but not sucrose-plus-sucrose-cue-triggered reinstatement of sucrose-seeking behavior. Overall, these data show that the novel D(3)-selective antagonist NGB 2904 attenuates cocaine's rewarding effects as assessed by PR self-administration, BSR, and cocaine-triggered reinstatement of cocaine-seeking behavior. Owing to these properties and to its lack of rewarding effects (as assessed by BSR and by substitution during drug self-administration), NGB 2904 merits further investigation as a potential agent for treatment of cocaine addiction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call