Abstract

In high-rise building structures, only using structural stiffness to resist the seismic energy is not economic and effective. Therefore, various energy dissipation devices are deployed to the structure, such as friction type energy dissipation device, Buckling Restrained Bracing (BRB) and viscous damper. Many researchers have been working on improving the performance of the dissipation devices. Though the plastic or residual deformation after earthquakes can consume the energy, the irreversible damage was introduced. In addition, its capability highly depends on the materials. Therefore, we proposes to take advantage of the mechanical bistablity to design a novel energy dissipation device, Mechanical bistability is defined as availability of two stable equilibrium configurations in the structure in response to the same loading conditions. The bistablity was realize by constructing a mechanical metamaterial: the snapping and buckling behavior were used to control the multistable response. The load-displacement curve was obtained by the analytical model. The results show that bistable stage was achieved. With bistablity and hysteretic characteristics, the proposed design can dissipate considerable energy. It provides a new strategy to develop the energy dissipation device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.