Abstract
BackgroundCXCL12α, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4) and heparan sulfate (HS). The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12γ, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS.Methodology/Principal FindingsUsing surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12γ first 68 amino acids adopt a structure closely related to the well described α isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60 % of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM), and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine.Conclusions/SignificanceTogether these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the γ isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS could differentially orchestrate the CXCL12 mediated directional cell kinesis.
Highlights
CXCL12, known as SDF-1 (Stromal cell-Derived Factor-1), belongs to the growing family of chemokines, a group comprising some fifty low molecular weight proteins, best known to mediate leukocyte trafficking and activation [1]
These analyses demonstrated that CXCL12c interacts with GAGs with an unprecedented propensity, featuring a 2 log increase compared to CXCL12a, and suggesting a strong participation of the C-terminal domain in the binding reaction
We have shown that CXCL12c, a new splice variant of CXCL12, displays an unusually high affinity for GAGs and investigated the structural determinants involved
Summary
CXCL12, known as SDF-1 (Stromal cell-Derived Factor-1), belongs to the growing family of chemokines, a group comprising some fifty low molecular weight proteins, best known to mediate leukocyte trafficking and activation [1]. CXCL12, initially identified from bone marrow stromal cells and characterized as a pre-B-cell stimulatory factor [2], is constitutively expressed within tissues during organogenesis and adult life [3,4] This chemokine, highly conserved among mammalian species, is a key regulator of oriented cell migration. This shows that the c isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Depending on the chemokine isoform to which it binds, HS could differentially orchestrate the CXCL12 mediated directional cell kinesis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.