Abstract
The HES family of bHLH repressors plays a key role in regulating the differentiation of neural precursors in the vertebrate embryo. Members of the HES gene family are expressed in neural precursors as targets of the Notch signaling pathway, but how this occurs in the context of neurogenesis is not known. Here, we address this issue by identifying enhancers driving Notch-dependent gene expression of two Hes5-like genes expressed in Xenopus called Esr1 and Esr10. Using frog transgenesis, we identify enhancer elements driving expression of Esr1 and Esr10 in neural precursors or in response to ectopic expression of the proneural protein, Xngnr1. Using deletion and mutation analysis, we define motifs required for enhancer activity of both genes, namely Notch-responsive elements and, in the case of Esr10, E-box motifs. We find that Esr1 and Esr10 are differentially regulated both in terms of Notch input and its interaction with heterologous factors. These studies reveal inputs required for proneural expression of genes encoding bHLH repressors in the developing vertebrate nervous system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.