Abstract

We present a new extended phase space method for constant temperature (canonical ensemble) molecular dynamics. Our starting point is the Hamiltonian introduced by Nosé to generate trajectories corresponding to configurations in the canonical ensemble. Using a Poincaré time-transformation, we construct a Hamiltonian system with the correct intrinsic timescale and show that it generates trajectories in the canonical ensemble. Our approach corrects a serious deficiency of the standard change of variables (Nosé–Hoover dynamics), which yields a time-reversible system but simultaneously destroys the Hamiltonian structure. A symplectic discretization method is presented for solving the Nosé–Poincaré equations. The method is explicit and preserves the time-reversal symmetry. In numerical experiments, it is shown that the new method exhibits enhanced stability when the temperature fluctuation is large. Extensions are presented for Nosé chains, holonomic constraints, and rigid bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.