Abstract

Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of dust on the Earth's systems. We have recently provided a significant update to the scientific understanding on the climatically and environmentally significant high-latitude dust (HLD) sources. Based on the presented evidence (Meinander et al. 2022), we have suggested a “northern high latitude dust belt” (Meinander et al. 2022), defined as the area north of 50∘ N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55∘ N in Canada and a “cold HLD-source area” including areas north of 60∘ N in Eurasia and north of 58∘ N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. We estimate the high-latitude land area with potential dust activity to cover over 560 000 km2 with very high potential for dust emission, and over 240 000 km2 with the highest potential for dust emission.We have identified, described, and quantified the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Our work also included model results on HLD emission, long-range transport, and deposition at various scales of time and space, and we have specified key climatic and environmental impacts of HLD and related research questions, which could improve our understanding of HLD sources, on clouds and climate feedback, atmospheric chemistry, marine environment, cryosphere, and cryosphere–atmosphere feedbacks. For example, we estimated that about 57% of the dust deposition in snow- and ice-covered Arctic regions was from high latitude dust sources.We gratefully acknowledge Douglas Hamilton.Citation: Meinander, O. et al. Newly identified climatically and environmentally significant high-latitude dust sources, Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, 2022.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call