Abstract

Understanding marine ecosystem dynamics is a key challenge and opportunity facing us. One of the ways we can continue to unravel and understand marine ecosystem dynamics is via ecosystem modeling. We used one such model, ATLANTIS, to help explore the dynamics of the Northeast United States (NEUS) Continental Shelf Large Marine Ecosystem (LME). We have parameterized ATLANTIS for the NEUS LME by including major functional groups across a range of biota, the physiographic dynamics of the ecosystem, and the major fishing fleets. The objectives of this work were to describe the application of this ATLANTIS NEUS model; briefly highlight modeling skill; note areas for further improvement, data gaps, major lessons learned, and how our understanding of the ecosystem was enhanced as we executed the modeling process; and note how these model outputs could inform living marine resource management in this region. The preliminary results we show here describe outputs from a multivariate, multispecies, multifactorial modeling approach. Our modeling skill is reasonable, as determined by the fact that over 90% of our fleet effort estimates, nearly 80% of our functional group catches, and 100% of our main functional group biomasses were within limits of tolerance. Moreover, the general patterns and phenology of major events were replicated consistently, both in space and time across a broad suite of physical, chemical, biological and human factors. These include several taxa groups such as primary producers, zooplankton, benthos, fishes, marine mammals, as well as nutrients, landings, and fishing effort. Conversely, as expected, there were some groups or fleets that did exceed levels of tolerance. These were mostly invertebrate groups such as shrimp, squid or gelatinous zooplankton, groups which are notorious for being difficult to model. Yet the major taxa groups and main fishing fleets were all well within levels of tolerance. Thus, we assert that with the majority of all main processes and state variables simulated, this ATLANTIS model can indeed reasonably approximate observations for the NEUS LME across a range of factors, and more importantly can be used to evaluate the relative prominence across a range of factors that contribute to the dynamics of this marine ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call