Abstract

Abstract This paper examines characteristic changes in North Pacific sea surface temperature (SST) variability during the boreal winter (December–February) for two subperiods (1956–88 and 1977–2009) during which the 1976/77 and the 1988/89 climate transitions occurred. It is found that the Pacific decadal oscillation (PDO)-like SST variability plays a dominant role in the 1976/77 climate transition, while both the North Pacific Gyre Oscillation (NPGO)-like and PDO-like SST variability contribute to the 1988/89 climate transition. Furthermore, the leading mode changes from PDO-like SST variability during the period 1956–88 to NPGO-like SST variability during the period 1977–2009, indicative of an enhancement of NPGO-like SST variability since 1988. Changes in sea level pressure across the 1976/77 climate transition project strongly onto the Aleutian low pressure system. But sea level pressure changes across the 1988/89 climate transition project primarily onto the North Pacific Oscillation, which is associated with remote changes in the Arctic Oscillation over the polar region as well. This contributes to enhancing the NPGO-like SST variability after 1988. The authors also analyze the output from an ensemble of Tropical Ocean and Global Atmosphere (TOGA) experiments in which the observed SSTs are inserted only at grid points in the tropics between 20°S and 20°N. The results indicate that the changes in the North Pacific atmosphere in the 1976/77 climate transition are mostly due to the tropics, whereas those in the 1988/89 climate transition are not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call