Abstract

Abstract In this paper, precursors to the North Atlantic Oscillation (NAO) and its transitions are investigated to understand the dynamical cause of the interdecadal NAO variability from dominant negative (NAO−) events during 1950–77 (P1) to dominant positive (NAO+) events during 1978–2010 (P2). It is found that the phase of the NAO event depends strongly on the latitudinal position of the North Atlantic jet (NAJ) prior to the NAO onset. The NAO− (NAO+) events occur frequently when the NAJ core prior to the NAO onset is displaced southward (northward), as the situation within P1 (P2). Thus, the northward (southward) shift of the NAJ from its mean position is a precursor to the NAO+ (NAO−) event. This finding is further supported by results obtained from a weakly nonlinear model. Furthermore, the model results show that, when the Atlantic mean zonal wind exceeds a critical strength under which the dipole anomaly prior to the NAO onset is stationary, in situ NAO− (NAO+) events, which are events not preceded by opposite events, can occur frequently during P1 (P2) when the Atlantic storm track is not too strong. This mean zonal wind condition is easily satisfied during P1 and P2. However, when the Atlantic storm track (mean zonal wind) prior to the NAO onset is markedly intensified (weakened), the NAO event can undergo a transition from one phase to another, especially in a relatively strong background westerly wind, the Atlantic storm track has to be strong enough to produce a phase transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call