Abstract
Pile-supported machine foundations are examined in this work to identify the dynamic features of linear and nonlinear theories. A three-pile group with a 3 m pile length and an outer diameter of 0.114 m is given axial harmonic loading before field-based forcing vibration testing. For four distinct eccentric moments, tests are carried out at a static load of 12 kN. Each eccentric instant's reaction in terms of frequency and amplitude is examined. The continuum approach technique is also used for theoretical analysis, which employs both linear and nonlinear solutions. All of the eccentric moments' dynamic field test findings are compared to theoretically expected frequency-amplitude responses. In comparison to the actual test findings, the linear solution's anticipated responses show lower resonant amplitudes and substantially higher resonant frequencies. The dynamic response curves predicted by the nonlinear solution fit the test findings rather well in this situation. To achieve this degree of agreement with nonlinear analysis results, precision in border zone parameters and soil-pile separation lengths was necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.