Abstract

BackgroundThe chondro-osseous junctional region of diarthrodial joints is peculiarly complex and may be considered to consist of the deepest layer of non-calcified cartilage, the tidemark, the layer of calcified cartilage, a thin cement line (between the calcified cartilage and the subchondral bone) and the subchondral bone. A detailed knowledge of the structure, function and pathophysiology of the normal chondro-osseous junction is essential for an understanding of the pathogenesis of osteoarthrosis.MethodsFull thickness samples from human knee joints were processed and embedded in paraffin wax. One hundred serial sections (10 μm thick) were taken from the chondro-osseous junctional region of a block from the medial tibial plateau of a normal joint. They were stained with haematoxylin and eosin and photographed. For a simple physical reconstruction images of each 10th sequential tissue section were printed and the areas of the photomicrographs containing the chondro-osseous junctional region were cut out and then overlaid so as to create a three-dimensional (3D) model of this region. A 3D reconstruction was also made using computer modelling.ResultsHistochemical staining revealed some instances where prolongations of uncalcified cartilage, delineated by the tidemark, dipped into the calcified cartilage and, in places, abutted onto subchondral bone and marrow spaces. Small areas of uncalcified cartilage containing chondrocytes (virtual islands) were seen, in two-dimensional (2D) sections, to be apparently entombed in calcified matrix. The simple physical 3D reconstruction confirmed that these prolongations of uncalcified cartilage were continuous with the cartilage of zone IV and demonstrated that the virtual islands of uncalcified cartilage were cross-sections of these prolongations. The computer-generated 3D reconstructions clearly demonstrated that the uncalcified prolongations ran through the calcified cartilage to touch bone and marrow spaces and confirmed that the apparent entombment of chondrocytes was a 2D artefact.ConclusionThis study demonstrates that the chondro-osseous junctional region is more complex than previously described. The tidemark is a clearly defined boundary delineating uncalcified from calcified cartilage. It is not a straight line across a joint, but a complex three-dimensional structure that follows uncalcified cartilage prolongations dipping down through the calcified cartilage to abut onto subjacent bone or marrow spaces.

Highlights

  • The chondro-osseous junctional region of diarthrodial joints is peculiarly complex and may be considered to consist of the deepest layer of non-calcified cartilage, the tidemark, the layer of calcified cartilage, a thin cement line and the subchondral bone

  • The computer generated 3D reconstructions clearly demonstrated that the uncalcified prolongations ran through the calcified cartilage to touch bone and marrow spaces and confirmed that the apparent entombment of small areas of uncalcified cartilage matrix, containing chondrocytes, was a 2D artefact (Figures 5 and 6)

  • It is not a straight line across a joint, but a complex 3D structure that follows uncalcified cartilage prolongations, dipping down through the calcified cartilage to abut onto subjacent bone or marrow spaces

Read more

Summary

Introduction

The chondro-osseous junctional region of diarthrodial joints is peculiarly complex and may be considered to consist of the deepest layer of non-calcified cartilage, the tidemark, the layer of calcified cartilage, a thin cement line (between the calcified cartilage and the subchondral bone) and the subchondral bone. The chondro-osseous junctional region (COJ) of diarthrodial joints is peculiarly complex and may be considered to consist, in its full extent and in sequence, of the deepest layer of non-calcified cartilage (zone IVB), the tidemark, the layer of calcified cartilage (zone V), a thin line (which may be inapparent) between the calcified cartilage and the subchondral bone and which is sometimes referred to as a cement line, the subchondral plate of lamellar bone, trabecular bone and bone marrow spaces (Figure 1). DFiigagurraem1matic representation of the zones of articular cartilage and subchondral bone Diagrammatic representation of the zones of articular cartilage and subchondral bone. (Zones as per Gardner et al 1987 [13])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call