Abstract

We propose a novel family of self-decomposable Lévy processes where one can control separately the tail behavior and the jump activity of the process, via two different parameters. Crucially, we show that one can sample exactly increments of this process, at any time scale; this allows the implementation of likelihood-free Markov chain Monte Carlo algorithms for (asymptotically) exact posterior inference. We use this novel process in Lévy-based stochastic volatility models to predict the returns of stock market data, and show that the proposed class of models leads to superior predictive performances compared to classical alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.