Abstract

We prove a normal form theorem for Poisson structures around Poisson transversals (also called cosymplectic submanifolds), which simultaneously generalizes Weinstein's symplectic neighborhood theorem from symplectic geometry and Weinstein's splitting theorem. Our approach turns out to be essentially canonical, and as a byproduct, we obtain an equivariant version of the latter theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.