Abstract

The non-specific lipid transfer protein (nsL-TP) purified from rat and bovine liver accelerates the transfer of all common diacylglycerophospholipids, cholesterol as well as glycosphingolipids and gangliosides between membranes. These proteins have molecular weights in the order of 14 500 and are highly basic (isoelectric points between 8.5 and 9.5). The primary structure of nsL-TP from bovine liver has been elucidated yielding a single polypeptide chain of 121 amino-acid residues. The protein contains one cysteine residue, essential for transfer activity, a single tryptophan residue and lacks histidine, arginine and tyrosine residues. Rat liver nsL-TP was found to be identical to sterol carrier protein 2, stimulating the microsomal conversion of intermediates between lanosterol and cholesterol. Evidence was presented that nsL-TP binds cholesterol, suggesting that it acts as a carrier. On the other hand, failure to bind phospholipids disagrees with this proposed mode of action. A sensitive enzyme immunoassay was developed to determine levels of nsL-TP in rat tissues. By use of this assay, nsL-TP was found to be most prominently present in liver and intestinal mucosa (0.78 and 0.46 μg nsL-TP per mg protein in 105 000 × g supernantant, respectively). Subfractionation studies showed that approx. 70% of nsL-TP was present in the membrane-free cytosol. However, application of an immunosorbent-purified antibody and protein A-linked gold particles to rat liver slices demonstrated a concentration of label over the peroxisomes. By way of immunoblotting it was shown that nsL-TP was absent from peroxisomes and that the immunoreactive material was a protein of mol. wt. 58 000. nsL-TP is a capable of mediating net transfer of cholesterol to membranes, deficient in this lipid. Under such conditions of net transfer, nsL-TP stimulated the microsomal esterification of cholesterol and its conversion to pregnenolone by adrenal mitochondria. Levels of nsL-TP in Reuber H35 hepatoma cells was six per cent of that found in rat hepatocytes. This very low level of nsL-TP had no effect on de novo cholesterol biosynthesis and intracellular cholesterol esterification. These results raise doubts as to whether nsL-TP has a function in in situ cholesterol metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.