Abstract

The electron heat transport plays an important role in laser driven inertial confinement fusion. For the plasmas created by intense laser, the traditional Spitzer–Härm theory cannot accurately describe the electron heat transport process mainly due to two physical effects. First, the electron distribution function would significantly differ from the Maxwellian distribution because of the inverse bremsstrahlung heating. Second, the long mean free paths of heat carrying electrons relative to the temperature scale length indicate that the electron heat flux has the nonlocal feature. In 2020, we have developed a nonlocal electron heat transport model based on the non-Maxwellian electron distribution function (NM-NL model) to describe the electron heat flux in laser plasmas. Recently, this model is successfully incorporated into our radiation hydrodynamical code RDMG. In this article, we numerically investigated the electron heat flux in laser plasmas, especially the nonlocal feature of heat flux and the influence of the non-Maxwellian distribution. The influence of electron heat transport on laser ablation is also discussed. The simulated plasma conditions based on different electron heat transport models are presented and compared with experiments. Our results show that the nonlocal feature of heat flux and the influence of non-Maxwellian distribution function are considerable in plasmas heated by intense lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.