Abstract

A new nonlinear gyro-kinetic flux tube code (GKW) for the simulation of micro instabilities and turbulence in magnetic confinement plasmas is presented in this paper. The code incorporates all physics effects that can be expected from a state of the art gyro-kinetic simulation code in the local limit: kinetic electrons, electromagnetic effects, collisions, full general geometry with a coupling to a MHD equilibrium code, and E × B shearing. In addition the physics of plasma rotation has been implemented through a formulation of the gyro-kinetic equation in the co-moving system. The gyro-kinetic model is five-dimensional and requires a massive parallel approach. GKW has been parallelised using MPI and scales well up to 8192+ cores. The paper presents the set of equations solved, the numerical methods, the code structure, and the essential benchmarks. Program summary Program title: GKW Catalogue identifier: AEES_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEES_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL v3 No. of lines in distributed program, including test data, etc.: 29 998 No. of bytes in distributed program, including test data, etc.: 206 943 Distribution format: tar.gz Programming language: Fortran 95 Computer: Not computer specific Operating system: Any for which a Fortran 95 compiler is available Has the code been vectorised or parallelised?: Yes. The program can efficiently utilise 8192+ processors, depending on problem and available computer. 128 processors is reasonable for a typical nonlinear kinetic run on the latest x86-64 machines. RAM: ∼ 128 MB–1 GB for a linear run; 25 GB for typical nonlinear kinetic run (30 million grid points) Classification: 19.8, 19.9, 19.11 External routines: None required, although the functionality of the program is somewhat limited without a MPI implementation (preferably MPI-2) and the FFTW3 library. Nature of problem: Five-dimensional gyro-kinetic Vlasov equation in general flux tube tokamak geometry with kinetic electrons, electro-magnetic effects and collisions Solution method: Pseudo-spectral and finite difference with explicit time integration Additional comments: The MHD equilibrium code CHEASE [1] is used for the general geometry calculations. This code has been developed in CRPP Lausanne and is not distributed together with GKW, but can be downloaded separately. The geometry module of GKW is based on the version 7.1 of CHEASE, which includes the output for Hamada coordinates. Running time: (On recent x86-64 hardware) ∼10 minutes for a short linear problem; 48 hours for typical nonlinear kinetic run.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call