Abstract

The nonlinear equation for curved stationary flames of realistic expansion coefficients is solved numerically for the problem of flame propagation in cylindrical tubes. Two different configurations of a flame front corresponding to convex and concave flames are obtained. The convex and concave flames propagate with different velocities that depend on the tube radius and on the expansion coefficient of the burning matter. For tubes of a moderate radius the velocity amplification for convex flames exceeds the respective velocity amplification of two-dimensional flames almost twice. For tubes of a large radius unlimited increase of the curved flame velocity with increase of the tube width takes place. The obtained theoretical results are in good quantitative agreement with the results of numerical experiments on flame dynamics in cylindrical tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.