Abstract
The authors theoretically and numerically investigate the beam propagation near the supercollimation frequency ωs0 in a photonic crystal made of nonlinear material. Since the value and sign of the equal-frequency-contour curvature which dominates the beam behaviors can be nonlinearly tuned near ωs0, a kind of nonlinear effect is generated. The envelope equation with unique form is also obtained. Beam-control mechanisms are theoretically predicted and observed in numerical experiments, such as tunable collimation, tunable beam-divergence angle, and self-lock of collimation. These mechanisms can be utilized to function as fiber, lens and coupler, or to design photonic devices.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.