Abstract

The nonadditive entropy Sq has been introduced in 1988 focusing on a generalization of Boltzmann–Gibbs (BG) statistical mechanics. The aim was to cover a (possibly wide) class of systems among those very many which violate hypothesis such as ergodicity, under which the BG theory is expected to be valid. It is now known that Sq has a large applicability; more specifically speaking, even outside Hamiltonian systems and their thermodynamical approach. In the present paper we review and comment some relevant aspects of this entropy, namely (i) Additivity versus extensivity; (ii) Probability distributions that constitute attractors in the sense of Central Limit Theorems; (iii) The analysis of paradigmatic low-dimensional nonlinear dynamical systems near the edge of chaos; and (iv) The analysis of paradigmatic long-range-interacting many-body classical Hamiltonian systems. Finally, we exhibit recent as well as typical predictions, verifications and applications of these concepts in natural, artificial, and social systems, as shown through theoretical, experimental, observational and computational results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.