Abstract

Cell-free DNA (cfDNA) is a source for liquid biopsy used for cancer diagnosis, therapy selection, and disease monitoring due to its non-invasive nature and ease of extraction. However, cfDNA also participates in cancer development and progression by horizontal transfer. In humans, cfDNA circulates complexed with extracellular vesicles (EV) and macromolecular complexes such as nucleosomes, lipids, and serum proteins. The present study aimed to demonstrate whether cfDNA not associated with EV induces cell transformation and tumorigenesis. Supernatant of the SW480 human colon cancer cell line was processed by ultracentrifugation to obtain a soluble fraction (SF) and a fraction associated with EV (EVF). Primary murine embryonic fibroblast cells (NIH3T3) underwent passive transfection with these fractions, and cell proliferation, cell cycle, apoptosis, cell transformation, and tumorigenic assays were performed. Next, cfDNA was analyzed by electronic microscopy, and horizontal transfer was assessed by human mutantKRASin recipient cells via PCR and recipient cell internalization via fluorescence microscopy. The results showed that the SF but not the EVF of cfDNA induced proliferative and antiapoptotic effects, cell transformation, and tumorigenesis in nude mice, which were reduced by digestion with DNAse I and proteinase K. These effects were associated with horizontal DNA transfer and cfDNA internalization into recipient cells. The results suggest pro-tumorigenic effects of cfDNA in the SF that can be offset by enzyme treatment. Further exploration of the horizontal tumor progression phenomenon mediated by cfDNA is needed to determine whether its manipulation may play a role in cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.