Abstract

Abstract Solutions of Rough Differential Equations (RDE) may be defined as paths whose increments are close to an approximation of the associated flow. They are constructed through a discrete scheme using a non-linear sewing lemma. In this article, we show that such solutions also solve a fixed point problem by exhibiting a suitable functional. Convergence then follows from consistency and stability, two notions that are adapted to our framework. In addition, we show that uniqueness and convergence of discrete approximations is a generic property, meaning that it holds excepted for a set of vector fields and starting points which is of Baire first category. At last, we show that Brownian flows are almost surely unique solutions to RDE associated to Lipschitz flows. The later property yields almost sure convergence of Milstein schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.