Abstract
Brandhorst and Shimada described a large class of Enriques surfaces, called (\tau,\bar{\tau}) -generic, for which they gave generators for the automorphism groups and calculated the elliptic fibrations and the smooth rational curves up to automorphisms. In the present paper, we give lower bounds for the non-degeneracy invariant of such Enriques surfaces, we show that in most cases the invariant has generic value 10 , and we present the first known example of complex Enriques surface with infinite automorphism group and non-degeneracy invariant not equal to 10 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.