Abstract

Contrary to the previous work that successfully applied the constant CTOD/CTOA fracture criteria to relatively thin structures, this paper demonstrates that the initial non-constant portion of the CTOD/CTOA plays an essential role in predicting fracture behavior under plane-strain conditions. Three- and two-dimensional finite element analyses indicate that a severe underestimation of the load would occur as the crack extends if a constant CTOD/CTOA criterion were used. However, the use of a simplified, bilinear CTOD/CTOA criterion to approximate its non-constant portion will closely duplicate the test data. Furthermore, using the experimental data from J-integral tests with various crack length to specimen width ratios ( a/ W), it is demonstrated that the critical CTOD/CTOA is crack tip constraint dependent. The initial high values of the CTOD/CTOA are in fact a natural consequence of crack growth process that is reflected by, and consistent with, the J-resistance ( J– R) curve and its slope (tearing modulus).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.