Abstract

Let G be a connected Lie group with Lie algebra g. The Duflo map is a vector space isomorphism between the symmetric algebra S(g) and the universal enveloping algebra U(g) which, as proved by Duflo, restricts to a ring isomorphism from invariant polynomials onto the center of the universal enveloping algebra. The Duflo map extends to a linear map from compactly supported distributions on the Lie algebra g to compactly supported distributions on the Lie group G, which is a ring homomorphism for G-invariant distributions. In this paper we obtain analogues of the Duflo map and of Duflo's theorem in the context of equivariant cohomology of G-manifolds. Our result involves a non-commutative version of the Weil algebra and of the de Rham model of equivariant cohomology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.