Abstract

ABSTRACTPurpose: It has been proposed that DHEA influences bone formation through, bioconversion to 17β-estradiol; however, DHEA is converted to Δ5-androstenediol (Δ5-Adiol), a metabolite with estrogenic potential involved in diverse biological process. To gain new insight into the role of Δ5-Adiol in bone cells, we examined DHEA and Δ5-Adiol effects in neonatal rat and human hFOB1.19 osteoblasts.Methods: Osteoblast activity was assessed by analyzing proliferation, alkaline phosphatase activity, and expression of OSX and ALPL. We also examined binding affinities for osteoblast-ER and transcriptional activation of human (h)ERα, hERβ or hAR in U2-OS cells.Results: The most striking finding was that Δ5-Adiol had greater stimulatory effect than DHEA on rat osteoblast proliferation and differentiation, as well as ALPL expression in human osteoblasts. Interestingly, the Δ5-Adiol or DHEA-induced effects were not precluded with letrozole or trilostane, consistent with bioconversion of DHEA to Δ5-Adiol due to elevated expression of Hsd17b1 in neonatal rat osteoblasts, suggesting a high level of 17β-hydroxysteroid dehydrogenase type 1 activity. Conversely, Δ5-Adiol and DHEA-induced proliferative effects were inhibited with ICI 182780 alone or combined with trilostane, which correlates with the higher binding affinity of Δ5-Adiol for ER compared to DHEA. Furthermore, Δ5-Adiol showed a greater relative agonist activity for hERα than for hERβ or hAR.Conclusion: This study is the first to show that a bioactive DHEA derivative stimulates E2-dependent osteoblast activities, including proliferation and differentiation in rat and human osteoblasts, through ERα-related mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.