Abstract
We argue that the relevant higher gauge group for the non-abelian generalization of the self-dual string equation is the string 2-group. We then derive the corresponding equations of motion and discuss their properties. The underlying geometric picture is a string structure, i.e. a categorified principal bundle with connection whose structure 2-group is the string 2-group. We readily write down the explicit elementary solution to our equations, which is the categorified analogue of the 't Hooft-Polyakov monopole. Our solution passes all the relevant consistency checks; in particular, it is globally defined on $\mathbb{R}^4$ and approaches the abelian self-dual string of charge one at infinity. We note that our equations also arise as the BPS equations in a recently proposed six-dimensional superconformal field theory and we show that with our choice of higher gauge structure, the action of this theory can be reduced to four-dimensional supersymmetric Yang-Mills theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.