Abstract

The NOMAD experiment is a short base-line search for νμ − ντ oscillations in the CERN neutrino beam. The ντ's are searched for through their charged current interactions followed by the observation of the resulting τ− through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction and individual particles is demonstrated through the ability of NOMAD to observe Ks0's, Λ0's and π0's. Finally, the observation of τ− through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.