Abstract

The influences of noise on chaotic dynamics in a vibro-impact oscillator, modeled as Duffing Van der Pol (DVP) system with unilateral rigid barrier, are investigated. An interpolation strategy is introduced to locate the impact instants, and effective numerical method is proposed to improve the computational precision in the vibro-impact oscillator. Near the boundary crisis, the phenomenon of noise-induced chaotic transition occurs. Our studies reveal that the escape of oscillator from the boundary is responsible for this chaotic transition. The increase of noise can aggravate this escape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.