Abstract

In this paper we assess the importance as a noise source of the well-ordered large-scale structure of a jet. We propose two simple models of the structure: the first emphasizes those features in common with waves that initially grow on an unstable shear layer but eventually saturate and decay, while the second regards the abrupt pairing of eddies as the most significant event in the jet's development. Our models demonstrate the possibility that forcing at one frequency could increase the broad-band noise of a jet, though, for jets with supersonic eddy convection velocities, the sound propagating in the direction of the Mach angle retains the spectrum of the excitation field. These features are consistent with the available experimental data, and strongly support the view that the large-scale structure of jet turbulence provides the dominant contribution to jet noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.