Abstract
The hypothesis that Nogo-A (Reticulon 4A) and Nogo-66 receptor (NgR1) limit adult CNS axonal growth after injury is supported by both in vitro experiments and in vivo pharmacological studies. However, genetic assessment of the role of Nogo-A in corticospinal tract (CST) axons after spinal cord dorsal hemisection has yielded conflicting results. CST regeneration is detected in homozygous nogo-ab(trap/trap) mice, but not in nogo-ab(atg/atg) mice. CST regeneration is also present after pharmacological NgR blockade, but not in ngr1(-/-) mice. To assess the nogo-ab(atg) and ngr1-null alleles for other axon growth phenotypes, we created unilateral pyramidotomies and monitored the uninjured CST. There is robust pyramidotomy-induced growth of nogo-ab(atg/atg) and ngr1(-/-) CST axons into denervated cervical gray matter. This fiber growth correlates with recovery of fine motor skill in the affected forelimb. Thus nogo-ab and ngr1 play a modulated role in limiting CNS axonal growth across a spectrum of different tracts in various lesion models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.