Abstract

Symmetries in physical systems are defined in terms of conserved Noether Currents of the associated Lagrangian. In electrodynamic systems, global symmetry is defined through conservation of charges, which is reflected in gauge symmetry; however, loss of charges from a radiating system can be interpreted as localized loss of the Noether current which implies that electrodynamic symmetry has been locally broken. Thus, we propose that global symmetries and localized symmetry breaking are interwoven into the framework of Maxwell's equations which appear as globally conserved and locally non-conserved charges in an electrodynamic system and define the geometric topology of the electromagnetic field. We apply the ideas in the context of explaining radiation from dielectric materials with low physical dimensions. We also briefly look at the nature of reversibility in electromagnetic wave generation which was initially proposed by Planck, but opposed by Einstein and in recent years by Zoh.This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.