Abstract

The nociceptin receptor (NOPR) is an orphan G protein-coupled receptor that contains seven transmembrane helices. NOPR has a distinct mechanism of activation, though it shares a significant homology with other opioid receptors. Previously there have been reports on homology modeling of NOPR and also molecular dynamics simulation studies for a short period. Recently the crystal structure of NOPR was reported. In this study, we analyzed the time dependent behavior of NOPR docked with clinically important agonist molecules such as NOP (natural agonist) peptide and compound 10 (SCH-221510 derivative) using molecular dynamics simulations (MDS) for 100 ns. Molecular dynamics simulations of NOPR-agonist complexes allowed us to refine the system and to also identify stable structures with better binding modes. Structure activity relationships (SAR) for SCH221510 derivatives were investigated and reasons for the activities of these derivatives were determined. Our molecular dynamics trajectory analysis of NOPR-peptide and NOPR-compound 10 complexes found residues to be crucial for binding. Mutagenesis studies on the residues identified from our analysis could prove useful. Our results could also provide useful information in the structure-based drug design of novel and potent agonists targeting NOPR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.