Abstract

The magnetic resonance (MR) images of fetuses make it possible for doctors to detect out pathological fetal brains in early stages. Brain tissue segmentation is prerequisite for making brain morphology and volume analyses. nnU-Net is an automatic segmentation method based on deep learning. It can adaptively configure itself, so as to adapt to a specific task via preprocessing, network architecture, training, and post-processing. Therefore, we adapt nnU-Net to segment seven types of fetal brain tissues, including external cerebrospinal fluid, gray matter, white matter, ventricle, cerebellum, deep gray matter, and brainstem. With regard to the characteristics of the FeTA 2021 data, some adjustments are made to the original nnU-Net, so that it can segment seven types of fetal brain tissues precisely as far as possible. The average segmentation results on FeTA 2021 training data demonstrate that our advanced nnU-Net is superior to the peers including SegNet, CoTr, AC U-Net and ResUnet. Its average segmentation results are 0.842, 11.759 and 0.957 in terms of Dice, HD95 and VS criteria. Moreover, the experimental results on FeTA 2021 test data further demonstrate that our advanced nnU-Net has obtained good segmentation performance of 0.774, 14.699 and 0.875 in terms of Dice, HD95 and VS, ranked the third in FeTA 2021 challenge. Our advanced nnU-Net realized the task for segmenting the fetal brain tissues using MR images of different gestational ages, which can help doctors to make correct and seasonable diagnoses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.