Abstract

Professional deep-water divers exposed to hyperbaric pressure (HP) above 1.1 MPa develop high-pressure neurological syndrome, which is associated with central nervous system hyperexcitability. It was previously reported that HP augments N-methyl-D-aspartate receptor (NMDAR) synaptic responses, increases neuronal excitability, and potentially causes irreversible neuronal damage. In addition, we have reported that HP (10.1 MPa) differentially affects ionic currents, measured by the two-electrode voltage-clamp technique, of eight specific NMDAR subtypes generated by the co-expression of GluN1-1a or GluN1-1b with one of the four GluN2(A-D) subunits in Xenopus laevis oocytes. We now report that eight GluN1 splice variants, when co-expressed with GluN2A, mediate different ionic currents at normal and HP (5.1 MPa). These data, in conjunction with our previous results, indicate that both GluN1 and GluN2 subunits play a critical role in determining NMDAR currents under normal and HP conditions. These data, given the differential spatial distribution of the different NMDAR subtypes in the central nervous system, may offer a partial explanation for the mechanism governing the complex signs and symptoms of high-pressure neurological syndrome, and an explanation for the suspected long-term HP health decrement due to repetitive deep dives by professional divers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.