Abstract
In this work, we study the impact of input-spread on the steady-state excess mean squared error (EMSE) of the normalized least mean squares (NLMS) algorithm. First, we use the concept of majorization to order the input-regressors according to their spread. Second, we use Schur-convexity to show that the majorization order of the input-regressors is preserved in the EMSE. Effectively, we provide an analytical justification of the increase in steady-state EMSE as the input-spread increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.