Abstract

The synthesized catalyst nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were introduced into membrane technology for peroxymonosulfate (PMS) activation. The enhanced permeability of the N-MWCNTs-modified membrane might be attributed to the increase in hydrophilicity and membrane porosity. The catalytic degradation and membrane filtration performance for the N-MWCNTs-modified membrane/PMS system in treating different types of natural waters were evaluated. The removal of phenol by the N-MWCNTs-modified membrane was 83.67% in 2 min, which was greater than the phenol removal by the virgin membrane (3.39%) and N-MWCNT powder (41.42%), respectively. Moreover, the resultant membrane coupled with PMS activation exhibited outstanding removal effects on the fluorescent organics in the secondary effluent and Songhua River water. The combination effectively reduced the total membrane fouling caused by the secondary effluent, Songhua River water, and three typical model organics by 28.19–61.98%. Electron paramagnetic resonance and classical quenching tests presented that the active species (SO4·−, ·OH, and 1O2) and other non-radical processes generated by N-MWCNTs activated PMS decreased the foulants deposition on the membrane surface. Meanwhile, the membrane interception accelerated the aggregation of pollutants and PMS towards the membrane surface through applied pressure, facilitating their mass transfer to the N-MWCNTs surface for the catalysis exerted more effectively. This study demonstrated the potential application of the coupling of N-MWCNTs catalytic oxidation and the UF, which offers a promising prospect to improve the permeate quality and simultaneously overcome the membrane fouling barriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.