Abstract

We study the Oxygen and Nitrogen abundances in the interstellar medium of high-redshift galaxies. We use high resolution and high signal-to-noise ratio spectra of Damped Lyman-alpha (DLA) systems detected along the line-of-sight to quasars to derive robust abundance measurements from unsaturated metal absorption lines. We present results for a sample of 16 high-redshift DLAs and strong sub-DLAs (log N(HI)>19.5, 2.4 -1 and nine systems have [N/O]<-1.15. In the diagram [N/O] versus [O/H], a loose plateau is possibly present at [N/O]=-0.9 that is below the so-called primary plateau as seen in local metal-poor dwarf galaxies ([N/O] in the range -0.57 to -0.74). No system is seen above this primary plateau whereas the majority of the systems lie well below with a large scatter. All this suggests a picture in which DLAs undergo successive star-bursts. During such an episode, the [N/O] ratio decreases sharply because of the rapid release of Oxygen by massive stars whereas inbetween two bursts, Nitrogen is released by low and intermediate-mass stars with a delay and the [N/O] ratio increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call