Abstract

Abstract We perform a systematic study of the 56Ni mass (M Ni) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time (t p) and luminosity (L p) of a radioactively powered supernova to its M Ni that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter, β. Using observed t p, L p, and tail-measured M Ni values for 27 SESNe, we observationally calibrate β for the first time. Despite scatter, we demonstrate that the model of Khatami & Kasen with empirically calibrated β values provides significantly improved measurements of M Ni when only photospheric data are available. However, these observationally constrained β values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex) L p for a given M Ni. While effects due to composition, mixing, and asymmetry can increase L p none can explain the systematically low β values. However, the discrepancy can be alleviated if ∼7%–50% of L p for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the M Ni values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call