Abstract

Two related constructions are associated with screening operators in models of two-dimensional conformal field theory. One is a local system constructed in terms of the braided vector space X spanned by the screening species in a given CFT model and the space of vertex operators Y and the other is the Nichols algebra 𝔅(X) and the category of its Yetter–Drinfeld modules, which we propose as an algebraic counterpart, in a "braided" version of the Kazhdan–Lusztig duality, of the representation category of vertex-operator algebras realized in logarithmic CFT models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.