Abstract

An abelian p-group G has a nice basis if it is the ascending union of a sequence of nice subgroups, each of which is a direct sum of cyclic groups. It is shown that if G is any group, then G ⊕ D has a nice basis, where D is the divisible hull of pωG. This leads to a consideration of the nice basis rank of G, i.e., the smallest rank of a divisible group D such that G ⊕ D has a nice basis. This concept is used to show that there exist a reduced group G and a non-reduced group H, both without a nice basis, such that G ⊕ H has a nice basis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.