Abstract

Multiple myeloma remains incurable with conventional therapeutics. Thus, new treatments for this condition are clearly required. In this study we evaluated the novel NF-kappaB inhibitor LC-1 in multiple myeloma cell lines and plasma cells derived from multiple myeloma patients. LC-1 was cytotoxic to multiple myeloma cell lines H929, U266, and JJN3, and induced apoptosis in a dose-dependent manner with an overall LD(50) of 3.6 micromol/L (+/-1.8) after 48 hours in culture. Primary multiple myeloma cells, identified by CD38 and CD138 positivity, had a mean LD(50) for LC-1 of 4.9 micromol/L (+/-1.6); normal bone marrow cells were significantly less sensitive to the cytotoxic effects of LC-1 (P = 0.0002). Treatment of multiple myeloma cell lines with LC-1 resulted in decreased nuclear localization of the NF-kappaB subunit Rel A and the inhibition of NF-kappaB target genes. In addition, LC-1 showed synergy with melphalan, bortezomib, and doxorubicin (combination indices of 0.72, 0.61, and 0.78, respectively), and was more effective when cells were cultured on fibronectin. These data show that LC-1 has activity in multiple myeloma cell lines and primary multiple myeloma cells, and its ability to inhibit NF-kappaB seems important for its cytotoxic effects. Furthermore, LC-1-induced transcriptional suppression of survivin and MCL1 provides a potential explanation for its synergy with conventional agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call