Abstract
Software power estimation of CPUs is a central concern for energy efficiency and resource management in data centers. Over the last few years, a dozen of ad hoc power models have been proposed to cope with the wide diversity and the growing complexity of modern CPU architectures. However, most of these CPU power models rely on a thorough expertise of the targeted architectures, thus leading to the design of hardware-specific solutions that can hardly be ported beyond the initial settings. In this article, we rather propose a novel toolkit that uses a configurable/interchangeable learning technique to automatically learn the power model of a CPU, independently of the features and the complexity it exhibits. In particular, our learning approach automatically explores the space of hardware performance counters made available by a given CPU to isolate the ones that are best correlated to the power consumption of the host, and then infers a power model from the selected counters. Based on a middleware toolkit devoted to the implementation of software-defined power meters, we implement the proposed approach to generate CPU power models for a wide diversity of CPU architectures (including Intel, ARM, and AMD processors), and using a large variety of both CPU and memory-intensive workloads. We show that the CPU power models generated by our middleware toolkit estimate the power consumption of the whole CPU or individual processes with an accuracy of 98.5% on average, thus competing with the state-of-the-art power models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.