Abstract
The Newton polygon of the implicit equation of a rational plane curve is explicitly determined by the multiplicities of any of its parametrizations. We give an intersection-theoretical proof of this fact based on a refinement of the Kušnirenko–Bernštein theorem. We apply this result to the determination of the Newton polygon of a curve parameterized by generic Laurent polynomials or by generic rational functions, with explicit genericity conditions. We also show that the variety of rational curves with given Newton polygon is unirational and we compute its dimension. As a consequence, we obtain that any convex lattice polygon with positive area is the Newton polygon of a rational plane curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.