Abstract

The braking of the rail transit train consumes a great quantity of energy, and the thermal energy produced in the process of braking can affect the normal operation of the transit train. Thus recycling the braking energy becomes a research hotspot of urban rail train. This paper made an overall analysis of regenerative braking process, the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This paper also designs a new flywheel structure which can be applied on urban rail operating system. The new flywheel structure should be checked by finite element method and the radius of the rotor should be defined under the condition of meeting the requirements of carbon fiber material strength. Meanwhile, compared with the solid flywheel under the same condition, analysis shows that the maximum rotary inertia of the new flywheel and the quality energy density increased, and the discharge depth also perks up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.