Abstract

The present work aimed to investigate the cellular mechanisms involved on the vasorelaxation induced by the new nitric oxide donor [Ru(terpy)(bdq)NO]3+ (Terpy) in isolated mesenteric resistance artery and to compare the vascular responses in isolated vessels from 2K and 2K-1C hypertensive rats. We have used this artery because it is important to the control of vascular resistance and consequently to the blood pressure control. The NO donor Terpy induced relaxation in a concentration-dependent way in mesenteric resistance arteries. There were no differences between renal hypertensive (2K-1C) and normotensive (2K) in Terpy-induced relaxation neither in NO released. The relaxation induced by Terpy was inhibited by the soluble guanylyl-cyclase (sGC) inhibitor ODQ both in 2K and in 2K-1C with similar amplitude. In agreement with these data, the protein expression of the subunits α1 and β1 of the enzyme sGC was not different between 2K-1C and 2K mesenteric bed. The relaxation induced by Terpy was inhibited by the cGMP-dependent protein kinase (G kinase) inhibitor or by the non-selective K+ channel blocker tetraethylamonium (TEA), but with no difference between 2K-1C and 2K arteries. The relaxation induced by Terpy was also inhibited by the SERCA inhibitor thapsigargin in both groups. Taken together, these results show that the vascular relaxation induced by the NO donor [Ru(terpy)(bdq)NO]3+ involves the activation of NO/sGC/cGMP/GK pathway, activation of K+ channels sensitive to TEA and SERCA in normotensive and renal hypertensive rat mesenteric resistance arteries. Surprisingly, Terpy-induced vasorelaxation is similar in mesenteric resistance arteries of renal hypertensive and normotensive rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call