Abstract
The theoretical derivation of optical time-domain fractional Fourier transformation is achieved and implemented. Based on the understanding of fractional Fourier transformation, we propose a new method for analyzing the influence of combined effects of dispersion and self-phase modulation on the propagation of optical pulses. And the simulation results show that when the dispersion is dominant in the transmission, a fractional Fourier transformation with a negative order number will help reduce the broadening of optical pulses induced by the dispersion. On the other hand, when the self-phase modulation is dominant, a positive order fractional Fourier transmission can help eliminate the pulse splitting effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.