Abstract
<p>The precise orbit determination (POD) of Low Earth Orbiters (LEO), e.g. the Copernicus Sentinel Earth observation satellites, relies on the precise knowledge of the Earth gravity field and its variations with time. The most precise observation of time-variable gravity on a global scale is currently provided by the GRACE-FO satellites. But the monthly gravity field solutions are released with a latency of approx. 2 months, therefore they cannot be used for operational POD.</p><p>We present a deterministic signal model (DSM) that is fitted to the time-series of COST-G combined monthly gravity fields and describe the differences with respect to the available long-term gravity models including seasonal and secular time-variations. To validate the DSM, dynamic POD of the Sentinel-2B, -3B and -6A satellites is performed based on long-term or monthly gravity field models, and on the COST-G DSM. We evaluate the model quality on the basis of carrier phase residuals, orbit overlap analysis and independent satellite laser ranging observations, and study the limitation on orbit altitude posed by the reduced spherical harmonic resolution of the monthly models and the DSM.</p><p>The COST-G DSM is updated quarterly with the most recent GRACE-FO combined monthly gravity fields. It is foreseen to apply a sliding window approach with flexible window length to allow for an optimal adjustment in case of singular events like major earthquakes.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.