Abstract

In this review, we describe the experimental facilities and methods which make it possible to produce and measure the properties of the extreme neutron-rich nuclei. We then develop the theoretical framework that predicts and explains these properties; the shell-model approach with large-scale configuration interaction (mixing) SM-CI, with special emphasis in the competition between the spherical mean field and the nuclear correlations (mainly pairing and quadrupole-quadrupole). The SU(3) related symmetry properties of the latter are treated in detail as they will show to be of great heuristic value. We explore the Islands of Inversion (IoI) at N = 20 and N = 28. We make a side excursion into the heavier Calcium and Potassium isotopes, to discuss current issues on shell evolution and new magic numbers far from stability. We revisit the N = 40 Island of Inversion and extrapolate the successful predictions of the LNPS model to 60Ca. We discuss the doubly magic nucleus 78Ni, its shape coexistence and the prospect of a new IoI at N = 50 below Z = 28. Finally, we examine the behaviour of the N = 70 and N = 82 neutron closures as the neutron drip line is approached.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.