Abstract

There is increasing evidence that target-derived molecules play a crucial role in the regulation of neuronal survival during development. These molecules, termed neurotrophic factors, are thought to act in specific ways as defined by the neurotrophic theory. One central tenet of the neurotrophic theory is that some neurons in a population die because trophic molecules are available in only limited amounts during periods of naturally occurring cell death. Delivery of trophic factor to nerve terminals could be regulated by several mechanisms, including, for example, limited production (biosynthesis) by target cells, limited release by targets, or limited uptake by pre-synaptic terminals. An examination of recent studies of motoneuron development indicates that motoneurons compete, via axonal branching and synaptic contacts, for restricted sites on targets that provide access to trophic factors. According to this view, it is terminal branches and contact (‘synaptic’) sites that limit the regulation of neuronal survival, rather than trophic factor production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.